2,555 research outputs found

    Charmonium properties in deconfinement phase in anisotropic lattice QCD

    Get PDF
    J/Psi and eta_c above the QCD critical temperature T_c are studied in anisotropic quenched lattice QCD, considering whether the c\bar c systems above T_c are spatially compact (quasi-)bound states or scattering states. We adopt the standard Wilson gauge action and O(a)-improved Wilson quark action with renormalized anisotropy a_s/a_t =4.0 at \beta=6.10 on 16^3\times (14-26) lattices, which correspond to the spatial lattice volume V\equiv L^3\simeq(1.55{\rm fm})^3 and temperatures T\simeq(1.11-2.07)T_c. We investigate the c\bar c system above T_c from the temporal correlators with spatially-extended operators, where the overlap with the ground state is enhanced. To clarify whether compact charmonia survive in the deconfinement phase, we investigate spatial boundary-condition dependence of the energy of c\bar c systems above T_c. In fact, for low-lying S-wave c \bar c scattering states, it is expected that there appears a significant energy difference \Delta E \equiv E{\rm (APBC)}-E{\rm (PBC)}\simeq2\sqrt{m_c^2+3\pi^2/L^2}-2m_c (m_c: charm quark mass) between periodic and anti-periodic boundary conditions on the finite-volume lattice. In contrast, for compact charmonia, there is no significant energy difference between periodic and anti-periodic boundary conditions. As a lattice QCD result, almost no spatial boundary-condition dependence is observed for the energy of the c\bar c system in J/\Psi and \eta_c channels for T\simeq(1.11-2.07)T_c. This fact indicates that J/\Psi and \eta_c would survive as spatially compact c\bar c (quasi-)bound states below 2T_c. We also investigate a PP-wave channel at high temperature with maximally entropy method (MEM) and find no low-lying peak structure corresponding to \chi_{c1} at 1.62T_c.Comment: 13 pages, 11 figure

    Hadron properties in the nuclear medium

    Full text link
    The QCD vacuum shows the dynamical breaking of chiral symmetry. In the hot/dense QCD medium, the chiral order parameter such as is expected to change as function of temperature TT and density ρ\rho of the medium, and its experimental detection is one of the main challenges in modern hadron physics. In this article, we discuss theoretical expectations for the in-medium hadron spectra associated with partial restoration of chiral symmetry and the current status of experiments with an emphasis on the measurements of properties of mesons produced in near-ground-state nuclei.Comment: 40 pages, submitted to Reviews of Modern Physic

    Effect of Fermi Surface Topology on Inter-Layer Magnetoresistance in Layered Multiband Systems: Application to LaFeAsO1-xFx

    Full text link
    In layered single band systems, the interlayer conductivity depends on the orientation of the in-plane magnetic field and takes maximum values when the magnetic field is perpendicular to flat regions of the Fermi surface. Extending this known results to multi-band systems, we propose an experiment to extract information about their Fermi surface topology. We discuss application of the formula to a FeAs-based superconductor, LaFeAsO1x_{1-x}Fx_x. We show that the magnetically ordered state in the parent compound is clearly distinguished from the paramagnetic state by the oscillation period in the interlayer conductivity. We demonstrate that evolution of the Fermi surface topology by changing the doping concentration is reflected to the interlayer conductivity oscillation patterns.Comment: 12 pages, 6 figures, corrected Fig.6, added clarifications and refs, to appear in J. Phys. Soc. Jp

    Strange filamentary structures ("fireballs") around a merger galaxy in the Coma cluster of galaxies

    Full text link
    We found an unusual complex of narrow blue filaments, bright blue knots, and H-alpha emitting filaments and clouds, which morphologically resembled a complex of ``fireballs,'' extending up to 80 kpc south from an E+A galaxy RB199 in the Coma cluster. The galaxy has a highly disturbed morphology indicative of a galaxy--galaxy merger remnant. The narrow blue filaments extend in straight shapes toward the south from the galaxy, and several bright blue knots are located at the southern ends of the filaments. The Rc band absolute magnitudes, half light radii and estimated masses of the bright knots are -12 - -13 mag, 200 - 300 pc and 10^6-7 Msolar, respectively. Long, narrow H-alpha emitting filaments are connected at the south edge of the knots. The average color of the fireballs is B - Rc = 0.5, which is bluer than RB199 (B - R = 0.99), suggesting that most of the stars in the fireballs were formed within several times 10^8 yr. The narrow blue filaments exhibit almost no H-alpha emission. Strong H-alpha and UV emission appear in the bright knots. These characteristics indicate that star formation recently ceased in the blue filaments and now continues in the bright knots. The gas stripped by some mechanism from the disk of RB199 may be traveling in the intergalactic space, forming stars left along its trajectory. The most plausible fireball formation mechanism is ram pressure stripping by high-speed collision between the galaxy and the hot intra-cluster medium. The fireballs may be a snapshot of diffuse intra-cluster population formation, or halo star population formation in a cluster galaxy.Comment: 13 pages, 14 figures, submitted to Ap

    Effect of Band Structure on the Symmetry of Superconducting States

    Full text link
    Effects of the band structure on the symmetry of superconducting (SC) states are studied. For a square lattice system with a nearest-neighbor attractive interaction, SC states with various symmetries are found by changing the band structure, or, the shape of the Fermi surface. The spin-triplet ((px+ipy)(p_x + ip_y)-wave) and spin-singlet (dd- or s-wave) SC states, and states with their coexistence (d+ipyd + ip_y, s+ipys + ip_y) can be stabilized within the same type of interaction. The stability of interlayer-pairing states with line nodes is also examined, and its relation to the SC state of Sr2_2RuO4_4 is discussed.Comment: 4 pages, 4 figure

    Screening effects in plasma with charged Bose condensate

    Full text link
    Screening of Coulomb field of test charge in plasma with Bose condensate of electrically charged scalar field is considered. It is found that the screened potential contains several different terms: one decreases as a power of distance (in contrast to the usual exponential Debye screening), some other oscillate with an exponentially decreasing envelope. Similar phenomenon exists for fermions (Friedel oscillations), but fermionic and bosonic systems have quite different features. Several limiting cases and values of the parameters are considered and the resulting potentials are presented.Comment: 18 pages, 4 figure

    Phase conversion in a weakly first-order quark-hadron transition

    Full text link
    We investigate the process of phase conversion in a thermally-driven {\it weakly} first-order quark-hadron transition. This scenario is physically appealing even if the nature of this transition in equilibrium proves to be a smooth crossover for vanishing baryonic chemical potential. We construct an effective potential by combining the equation of state obtained within Lattice QCD for the partonic sector with that of a gas of resonances in the hadronic phase, and present numerical results on bubble profiles, nucleation rates and time evolution, including the effects from reheating on the dynamics for different expansion scenarios. Our findings confirm the standard picture of a cosmological first-order transition, in which the process of phase conversion is entirely dominated by nucleation, also in the case of a weakly first-order transition. On the other hand, we show that, even for expansion rates much lower than those expected in high-energy heavy ion collisions, nucleation is very unlikely, indicating that the main mechanism of phase conversion is spinodal decomposition. Our results are compared to those obtained for a strongly first-order transition, as the one provided by the MIT bag model.Comment: 12 pages, 10 figures; v2: 1 reference added, minor modifications, matches published versio

    Radio-continuum spectra of ram pressure stripped galaxies in the Coma Cluster

    Full text link
    Aims:Aims: We used the nearby Coma Cluster as a laboratory in order to probe the impact of ram pressure on star formation as well as to constrain the characteristic timescales and velocities for the stripping of the non-thermal ISM. Methods:Methods: We used high-resolution (6.53kpc6.5'' \approx 3\,\mathrm{kpc}), multi-frequency (144MHz1.5GHz144\,\mathrm{MHz} - 1.5\,\mathrm{GHz}) radio continuum imaging of the Coma Cluster to resolve the low-frequency radio spectrum across the discs and tails of 25 ram pressure stripped galaxies. With resolved spectral index maps across these galaxy discs, we constrained the impact of ram pressure perturbations on galaxy star formation. We measured multi-frequency flux-density profiles along each of the ram pressure stripped tails in our sample. We then fit the resulting radio continuum spectra with a simple synchrotron aging model. Results:Results: We showed that ram pressure stripped tails in Coma have steep (2α1-2 \lesssim \alpha \lesssim -1) spectral indices. The discs of galaxies undergoing ram pressure stripping have integrated spectral indices within the expected range for shock acceleration from supernovae (0.8α0.5-0.8 \lesssim \alpha \lesssim -0.5), though there is a tail towards flatter values. In a resolved sense, there are gradients in spectral index across the discs of ram pressure stripped galaxies in Coma. These gradients are aligned with the direction of the observed radio tails, with the flattest spectral indices being found on the `leading half'. From best-fit break frequencies we estimated the projected plasma velocities along the tail to be on the order of hundreds of kilometers per second, with the precise magnitude depending on the assumed magnetic field strength.Comment: 18 pages, 10 figures, 2 appendices, accepted for publication in A&

    Harmonic Content of Strain-induced Potential Modulation in Unidirectional Lateral Superlattices

    Full text link
    Detailed analysis of the commensurability oscillation (CO) has been performed on unidirectional lateral superlattices with periods ranging from a=92 to 184 nm. Fourier analysis reveals the second (and the third) harmonics along with the fundamental oscillation for a>=138 nm (184 nm) at low-enough temperature, evincing the presence of corresponding harmonics in the profile of the potential modulation. The harmonics manifest themselves in CO with demagnified amplitude due to the low-pass filtering action of the thermal damping factor; with a suitable consideration of the damping effect, the harmonics of the modulation potential are found to have the amplitudes V_2 and V_3 up to roughly 30% of that of the fundamental component V_1, despite the small ratio of the period a to the depth d = 99 nm of the two-dimensional electron gas (2DEG) from the surface. The dependence of V_n on a indicates that the fundamental component originates at the surface, while the higher harmonics arise from the effect of the strain that penetrates down into subsurface. The manipulation of high harmonics thus provides a useful technique to introduce small length-scale modulation into high-mobility 2DEGs located deep inside the wafer.Comment: 9 pages, 5 figure

    Riding the wake of a merging galaxy cluster

    Full text link
    Using WHT OASIS integral field unit observations, we report the discovery of a thin plume of ionised gas extending from the brightest cluster galaxy in Abell 2146 to the sub-cluster X-ray cool core which is offset from the BCG by ~37 kpc. The plume is greater than 15 kpc long and less than 3 kpc wide. This plume is unique in that the cluster it is situated in is currently undergoing a major galaxy cluster merger. The brightest cluster galaxy is unusually located behind the X-ray shock front and in the wake of the ram pressure stripped X-ray cool core and evidence for recent disruption to the BCG is observed. We examine the gas and stellar morphology, the gas kinematics of the BCG and their relation to the X-ray gas. We propose that a causal link between the ionised gas plume and the offset X-ray cool core provides the simplest explanation for the formation of the plume. An interaction or merger between the BCG and another cluster galaxy is probably the cause of the offset.Comment: 14 pages, 18 figures, accepted for publication in MNRA
    corecore